

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2012
2. REPORT TYPE

Conference Paper Post Print
3. DATES COVERED (From - To)

JAN 2010 – JUL 2011
4. TITLE AND SUBTITLE

DefEX: HANDS-ON CYBER DEFENSE EXERCISES
FOR UNDERGRADUATE STUDENTS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Sonja Glumich, Brian Kropa

5d. PROJECT NUMBER
GAIH

5e. TASK NUMBER
CY

5f. WORK UNIT NUMBER
BR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2012-007

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2011-2709
DATE CLEARED: 12 MAY 2011
13. SUPPLEMENTARY NOTES
Publication in WorldCom 2011, Security and Management Session Proceedings, 18-21 July 2011, Las Vegas, NV. This is a work of
the United States Government and is not subject to copyright protection in the United States.
14. ABSTRACT
DefEX incorporates a set of hands-on cyber security exercises aimed at developing problem-solving proficiency, teamwork, and
cyber defense skills in undergraduate students. The exercises include Code-Level and System-Level Hardening, Static and Dynamic
Reverse Engineering, Detect and Defeat, Digital Forensics, and the Wireless Access Point Treasure Hunt. Providing a diverse group
of students with a common set of foundational knowledge and finding the balance between enabling participation of novice students
and generating problems complex enough to challenge experienced students posed the major curriculum design risks. Instructors
reduced the risks by administering a technical survey, requiring students to complete a set of fundamental exercises, and assigning
balanced student teams. As a result, student teams successfully completed all of the exercises.

15. SUBJECT TERMS
Reverse Engineering, System Level Harding, Cyber Defense Exercise, Cyber Security Curriculum, Cyber Security Education.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF RESPONSIBLE PERSON
JAMES S. PERRETTA

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

DefEX: Hands-On Cyber Defense Exercises for
Undergraduate Students

Sonja M. Glumich and Brian A. Kropa

Cyber Sciences Branch, Air Force Research Laboratory, Rome, NY, USA

Abstract - DefEX incorporates a set of hands-on cyber
security exercises aimed at developing problem-solving
proficiency, teamwork, and cyber defense skills in
undergraduate students. The exercises include Code-Level and
System-Level Hardening, Static and Dynamic Reverse
Engineering, Detect and Defeat, Digital Forensics, and the
Wireless Access Point Treasure Hunt. Providing a diverse
group of students with a common set of foundational
knowledge and finding the balance between enabling
participation of novice students and generating problems
complex enough to challenge experienced students posed the
major curriculum design risks. Instructors reduced the risks
by administering a technical survey, requiring students to
complete a set of fundamental exercises, and assigning
balanced student teams. As a result, student teams successfully
completed all of the exercises.

Keywords: Cyber Defense Exercise, Cyber Security
Curriculum, Cyber Security Education

1 Introduction
 DefEX consists of hands-on cyber security exercises
designed to promote problem-solving proficiency, teamwork,
and cyber defense skills in undergraduate students. Students
worked in teams of three to complete the following exercises:
Code-Level and System-Level Hardening, Dynamic and
Static Reverse Engineering, Detect and Defeat, Digital
Forensics, and the Wireless Access Point Treasure Hunt.

DefEX falls under the full spectrum of cyber defense
activities including preventing attacks, detecting attacks,
surviving attacks, and recovering from attacks. The Code and
System-Level Hardening exercises address proactively
preventing attacks before they occur, the Detect and Defeat
exercise involves discovering and countering attacks, the
Forensics exercise involves enabling recovery efforts by
analyzing the aftereffects of attacks, and the Reverse
Engineering exercises address analyzing malicious code to
aid in surviving and recovering from attacks.

Student participants were rising seniors studying Computer
Science, Computer Engineering, Electrical Engineering,
Mathematics, and Physics at academic institutions across the
country. The major curriculum design challenge involved

enabling participation of novice students and generating
problems complex enough to challenge experienced students.
Students all possessed one semester of computer
programming in a high level language, a semester of discrete
math, and a year of calculus. While enforcing the set of
minimum academic requirements helped, instructors took
additional steps to account for the varied backgrounds of
students.

Accommodations included creating a technical survey and a
set of fundamental exercises and assigning balanced student
teams. Issuing the technical survey to students before the
exercises to assess prior experience in areas such as
networking, computer security, and digital logic helped
instructors tailor background materials for the exercises.
Requiring students to complete a set of fundamental exercises
before the DefEX exercises ensured a common familiarity
with VMware server, the Linux operating system, networking
protocols, and the client-server model. Assigning students
into teams to maximize the diversity of college majors created
balanced teams performing on near-equal footing. For
example, a team might consist of a mathematics student, a
computer science student, and a computer engineering
student.

2 Code-Level and System-Level Hardening
2.1 Background
 Code-level hardening involves activities undertaken by
software developers or testers to produce secure source code.
System-level hardening includes actions carried out by users
or operators to securely configure an existing system. The
software development lifecycle (SDLC) serves as a beneficial
contextual framework for teaching secure application design,
implementation, testing, and hardening. The instructor
presented the SDLC in seven phases: 1) Specify
(Requirements), 2) Architect, 3) Design, 4) Implement, 5)
Test, 6) Deploy, and 7) Maintain. Software developers and
testers engage in code-level hardening mainly during the
Implement and Test phases, and operators conduct system-
level hardening during the Deploy and Maintain phases.

One point reinforced by examining security activities in the
context of the SDLC was that code-level and system-level
hardening activities only eradicate a limited number of
vulnerabilities introduced in hardware or in the early SDLC
phases. Code-level hardening has a limited ability to remove
vulnerabilities introduced during the Specify, Architect, or

Approved for Public Release; Distribution Unlimited: 88ABW-
2011- 2709, 12 MAY 11

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

Design phases. System-level hardening is additionally
restricted in fixing Implement and Test phase vulnerabilities.
Conversely, developers and testers have a limited amount of
influence in helping users to securely configure a system in
the Deploy and Maintain phases. Designing a user friendly
system defaulting to strict security settings helps, but doesn’t
guarantee secure configuration.

This examination contradicts the validity of the practice of
blaming the user for current cyber security woes. Most users
lack the ability to remediate architectural, design, or code-
level vulnerabilities such as those existing in proprietary
operating system binaries. It also belies the notion that if
cyber operators are diligent enough while monitoring packets
and intrusion detection system (IDS) alerts they can
successfully thwart all attacks during the Deploy and
Maintenance phases. Although there exist many
knowledgeable, committed cyber operators, by the time they
deploy a majority of systems, the cyber security battle was
already lost earlier in the SDLC.

2.2 Exercise Goals
 The aim of the Code-Level and System-Level
Hardening exercises was for students to grasp the
complexities and manpower involved in developing a secure
system. In the context of the SDLC, students should have
comprehended that requirements engineers, architects,
designers, developers, testers, operators, and users all play
essential roles in producing and maintaining secure systems.

2.3 Code-Level Hardening Description
 After a short lecture introducing foundational concepts
including the SDLC, system-level hardening, and code-level
hardening, students examined the vulnerable application
“Madam Zora” (Zora). The instructor designed Zora, a
custom web application, specifically for the Code-Level and
System-Level Hardening exercises.

Students tested four vulnerabilities exhibited by the web
application: 1) Cross-Site Scripting (XSS), 2) Structured
Query Language (SQL) Injection, 3) Command Injection, and
4) File Upload. Next, the students patched the associated
flawed Perl and PHP Hypertext Preprocessor (PHP) code.
Finally, students retested the vulnerabilities to ensure the
coding changes fixed the vulnerabilities. The secure
programming practice take away from this exercise was to
filter all user-influenced input and output for web
applications. To accommodate students of varying
programming expertise, the instructor led the testing,
patching, and retesting of the four vulnerabilities, conducting
frequent checks for understanding and inviting questions.

2.3.1 Cross-Site Scripting
 XSS occurs when users manipulate web application
input to execute client-side commands on a system. A well-
known test for XSS entails inputting the JavaScript alert

command into a web application text field. Students tested
Zora text fields by entering the following command:

 <script language=‘javascript’>alert(‘Zora!’);</script>

If an alert box containing Zora! appeared, students
established the XSS vulnerability of the underlying script.
The Zora XSS vulnerability existed in a PHP file that echoed
unfiltered user input back to the screen. To eliminate the
vulnerability, students filtered the input using the PHP
htmlentities function and retested the code. The htmlentities
function translates certain ambiguous characters into their
corresponding character entity references. For example the
‘<’ character becomes ‘<’. This prevents inputted
JavaScript commands from being evaluated. The vulnerable
Zora code outputting unfiltered user input is shown below:

 $unfiltered[‘input’] = ($_GET[‘user_input’]);
 <?php echo $unfiltered[‘input’]?>

The fixed Zora code outputting input filtered with htmlentities
is as follows:

 $unfiltered[‘input’] = ($_GET[‘user_input’]);
 $filtered[‘input’]=htmlentities($unfiltered[‘input’]);
 <?php echo $filtered[‘input’]?>

2.3.2 Command Injection
 Command injection occurs when users manipulate input
to execute terminal commands. The Zora command injection
vulnerability stemmed from a line in a Perl file using the
system function in conjunction with user input saved into the
$username variable:

 system “cat ./${username}”;

Students executed desired commands with the privileges of
the Apache2 web server process by inputting a semicolon
terminator followed by the command of choice into the
username field on a login web page. For example, if students
inputted a semicolon followed by the print working directory
command (;pwd), the subsequent screen listed the command
output. The output in this case was the current working
directory (/home/zora).

Students implemented multiple strategies to fix the
vulnerability. Some students filtered the input saved into the
$username variable to remove characters typically not found
in usernames such as semicolons and slashes. Other students
eliminated the $username variable from the system command
while adding code to preserve the original functionality of the
web server.

2.3.3 SQL Injection
 SQL injection vulnerabilities occur when attackers craft
input data to cause SQL statements to be executed in ways
unanticipated by the original programmer. A common method

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

of testing for the vulnerability involves inputting a value that
causes WHERE statements to evaluate to true.

In the Madam Zora web application, a vulnerable PHP script
included the following statement:

 $sql = “SELECT fortune FROM fortune_table
 WHERE spirit_name=‘{$unfiltered[‘name’]}’”;

If a user inputted a value causing the overall statement to
always evaluate to true, such as:

 ’ or ‘x’=‘x

the executed command would be:

 $sql = “SELECT fortune FROM fortune_table
 WHERE spirit_name=‘’ or ‘x’=‘x’”;

Since ‘x’=‘x’ is always true, the SQL server displays all
fortune records in fortune_table. Students filtered the input
with the built-in PHP mysql_real_escape_string function,
which strips out special characters such as quotes. The fixed
Zora PHP script included the following code:

 $filtered[‘name’]=mysql_real_escape_string
 ($unfiltered[‘name’]);

Students eliminated the vulnerability by inserting the filtered
value $filtered[‘name’] in place of the unfiltered value
$unfiltered[‘name’] in the SELECT statement.

2.3.4 File Upload
 The file upload vulnerability occurs when user input
influences the creation, naming, and content of files. In the
exercise, students used a web form containing multiple fields
to upload malicious code and save it to a file name of their
choice. A Zora Perl file contained the vulnerable code:

 open (FILE, “> ./${zora}”) or $er = 1;
 if ($er == 0) { print(FILE “$fortune”);}

where $zora and $fortune are set by user input fields. The
Perl file saved the content of the $fortune variable as a file
with the name of $zora. Due to the large amount of text users
could save into the $fortune variable, it was possible to
upload the source code for a small backdoor to the Zora
server. Although the web server saved the file without
execute permission, students leveraged the command
injection flaw (discussed in section 2.3.2) to issue commands
to change permissions on, compile, and run the uploaded
backdoor.

2.4 System-Level Hardening Description
 During the System-Level Hardening exercise, students
identified and patched 22 system-level vulnerabilities
exhibited by the Madam Zora VMware image. The Zora

image distributed to students ran standard File Transfer
Protocol (FTP), Telnet, Hypertext Transfer Protocol (HTTP),
Internet Printing Protocol (IPP), and MySQL servers and non-
standard persistent Netcat backdoors on seven ports in the
4000-6000 range. Students possessed a list of operational
requirements to provide while patching the system: 1)
Apache2 server running on standard port 80, 2) MySQL
database server running on standard port 3306, 3) Netcat and
Cron installed and operational, 4) Working sudo account
named zora, 5) Secure mechanism to command and control
the system, and 6) Secure mechanism to copy files to and
from the system.

Students received a blank checklist for the 22 vulnerabilities.
Vulnerabilities included persistent backdoors, file permission
and account misconfigurations, and the use of outmoded,
unencrypted services such as Telnet. As students identified
and patched vulnerabilities, the instructor checked the
vulnerabilities off of each student list. At the conclusion of
the exercise, the instructor discussed all 22 vulnerabilities
with the students.

3 Reverse Engineering
3.1 Background
 Reverse engineering involves deciphering the
construction and function of a system by studying its
observable structure, characteristics, and behavior.
Performing reverse engineering requires familiarity with
computer architecture, operating systems, programming in
assembly and high-level languages, and tools such as
disassemblers, virtual environments, network monitors, and
system monitors.

There exist two major categories of reverse engineering
activities, dynamic analysis and static analysis. Dynamic
analysis entails performing a behavior-based study of an
executing binary. Dynamic analysis activities include
executing the analyzed binary in a controlled environment,
viewing file, process, and registry key modifications, and
detecting opened ports and established network connections.
Static analysis involves studying a binary code listing or
artifact without executing the binary. Static analysis activities
consist of dissecting a written code representation of a binary
by identifying functions, parameters, and arguments and
tracing its control flow.

Studying reverse engineering in nine hours by students of
varying backgrounds posed a significant risk of incurring
student alienation or despair. Although all students had
experience programming in a high level language, many had
limited exposure to assembly language and computer
architecture. Conducting an introductory lecture and smaller
supporting exercises before the main exercises reduced this
risk. Managing student expectations regarding mastery of the
material and providing numerous hints, code comments, and
intensive instructor assistance also helped.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

3.2 Exercise Goals
 The instructor stressed to students the impossibility of
becoming expert reverse engineers in nine hours. Instead, the
instructor presented the main goals as: 1) Reinforcing
foundational computer science and engineering topics such as
computer architecture, programming, networking, and
operating systems, 2) Exposing students to the range and
complexity of reverse engineering activities, and 3) Inspiring
further study in the field of reverse engineering.

3.3 Reverse Engineering Preparatory Lecture
 The three-hour preparatory lecture covered reverse
engineering concepts such as static and dynamic analysis of
code, the computer stack, registers, core x86 assembly
language instructions, malicious code, packers, and a set of
reverse engineering tools. The instructor provided students
with a Windows VMware image containing tools and sample
code for analysis. After introduction to each reverse
engineering tool, students accomplished a small, but
meaningful task using the tool. For instance, after learning
about hex editors, students used the XVI32 hex editor
program to view the strings embedded in a binary.

 After the lecture, students completed dynamic and static
analysis activities. The activities consisted of thirty-minute
warm-ups intended to prepare students for the three-hour
dynamic and static analysis exercises. For the dynamic
analysis activity, students applied tools such as hex editors,
packers, file system monitors, process monitors, and network
monitors to analyze the behavior of a packed binary that
output a string to the terminal when executed. The static
analysis activity involved determining the purpose,
parameters, and return value of an assembly language
function. At the conclusion of each activity, the instructor
reviewed the solution with the students.

3.4 Dynamic Exercise Description
 During the three-hour Dynamic Reverse Engineering
Exercise, students analyzed three malicious code binaries.
Establishing selection criteria for the malware to be analyzed
proved crucial for exercise success. The instructor
downloaded malicious code from offensivecomputing.net,
which provided a name, classification, hash values, and a
brief description of available malware samples. The instructor
obtained and tested over thirty samples before making the
final selections.

Selection criteria included the following: 1) Malware must
consist of three samples clearly representing different
malware categories (e.g. worm, bot, rootkit), 2) Malware
must be robust and reliable, 3) Due to time constraints,
malware must be unpackable without applying complex
techniques such as dumping the original code from memory
with a debugger, 4) Malware must exhibit overt, complex,
and varied behavior, such as file system changes, persistence

or defensive actions, data collection, and propagation, and 5)
Malware must immediately demonstrate effects.

After applying the selection criteria, the instructor chose three
samples including a keylogger, a trojan, and a bot. All
samples exhibited the desired levels of robustness and
reliability, used no packing technology or proved easy to
unpack, and demonstrated immediate and varied effects upon
installation.

Because the exercise required executing malware, students
performed the following tasks: 1) Divided laptops into
research machines and analysis machines, 2) Copied the
VMware image containing the malware and reverse
engineering tools to the analysis machines, 3) Connected the
analysis machines to the provided isolated switches (not
connected to the Internet), and 4) Connected the research
machines to the network providing Internet connectivity. As
all student laptops were identically configured and patched
and the malware either didn't spread over networks or took
advantage of well-known, patched vulnerabilities, spreading
from the VMware images to student analysis machines did
not present a concern.

After students setup their analysis and research machines and
started the VMware image containing the malware samples
and analysis tools, they completed an analysis worksheet for
each of the three malware samples. The worksheet included
fields such as functions and libraries referenced in the binary,
files and registry key changes, command and control method,
malware defenses, and remediation recommendation.

3.5 Static Exercise Description
 During the three-hour static analysis exercise, students
studied a four-page assembly language listing and packet
capture of the Structured Query Language (SQL) Slammer
worm. Slammer, also known as Sapphire, is a memory-
resident Internet worm that uses a buffer overflow exploit to
take control of hosts running a vulnerable version of SQL
Server. Slammer propagated by using its victim hosts to
generate and send single User Datagram Protocol (UDP)
packets containing attack code to random Internet Protocol
(IP) addresses. The instructor selected Slammer for the static
analysis exercise due to its short assembly code listing and
relative simplicity.

To account for the varying backgrounds and technical skill-
sets of the students, the instructor split the code into logical,
manageable segments, and provided students with research
questions for each segment. After students analyzed each
code segment and answered the associated questions, the
class reconvened to discuss the questions and the instructor
checked for understanding before proceeding to the next
segment.

 Due to time constraints, the instructor provided code
comments for instructions requiring tracking values on the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

stack or deciphering with a debugger. In addition, the
instructor provided the identity and value of the stack entries
referenced by the code. For example, the instructor provided
the comment Push address of sock_addr structure for the
instruction push eax. The instructor held a final discussion for
lessons learned at the end of the exercise.

4 Detect and Defeat
4.1 Background
 The Detect and Defeat exercise introduced students to
technologies that detect cyber threats within a network or on a
host computer, how to defeat those threats, and how to
architect defense-in-depth systems. Covered technologies
included firewalls, network intrusion detection systems
(NIDS), and host intrusion detection systems (HIDS).

A firewall is a device that filters network traffic at one or
more of the seven layers of the Open Systems Interconnection
(OSI) networking stack. There are many different types of
firewalls including network packet filters, application proxies,
and host system firewalls. At each operating level a firewall
will permit or deny traffic based on a set of rules or policy.

Intrusion detection systems come in two different varieties,
NIDS and HIDS. The common NIDS is a passive device that
examines the ingress and egress traffic of a network and flags
suspicious or malicious traffic based on a set of signature
rules. A HIDS monitors the integrity of important files,
binaries and executables on a host machine and alerts on
suspicious of malicious actions. Regarding detection
techniques, this exercise focused on signature-based IDSs and
did not address anomaly-based IDSs.

4.2 Exercise Goals
 The goals of the Detect and Defeat exercise were to
teach students common network security practices, introduce
them to popular network defense tools, and to use these tools
to identify and defeat threats within a network. The exercise
used tools for the Linux operating system to provide students
with additional Linux experience.

4.3 Description
 The Detect and Defeat exercise introduced students to
firewalls, NIDS, and HIDS for the Linux operating system.
For practice in configuring firewalls and network intrusion
detection systems, the Linux operating system provides an
optimal environment for students to learn how operating
systems execute firewall rules and process intrusion detection
signatures. The two-part exercise consisted of the following:
1) Introductory tutorials for the Linux application iptables, the
Snort IDS, and the host Advanced Intrusion Detection
Environment (AIDE), 2) Hands-on practice using the tools in
a live environment. In part one of the exercise, the instructor
asked students to implement the requirements outlined in
each tutorial on a practice Linux virtual machine (VM). For

part two, the instructor gave students two VMs to use in a live
scenario. The two VMs consisted of an aggressor VM and a
defender VM. The defender VM had iptables, Snort, and
AIDE installed but not configured. The aggressor VM
periodically executed a set of scripts that sent data to open
ports on the defender VM, triggered Snort IDS signatures,
and created alerts within AIDE. The objective for students
was to correctly configure the defender VM to detect and
defeat the aggressor VM actions. The students demonstrated
to the instructor the following items: 1) Used iptables to filter
incoming traffic and allowed traffic on port 80 (HTTP), 443
Secure Sockets Layer (SSL), and 22 Secure Shell (SSH), 2)
Configured Snort to recognize and alert against the traffic
coming from the aggressor VM, and 3) Established an AIDE
hash database for the files in the /etc directory and
demonstrated an alert on a file in the /etc directory.

5 Digital Forensics
5.1 Background
 Computer forensics is the discipline that combines
elements of law and computer science to collect and analyze
data from computer systems, networks, wireless
communications, and storage devices in a way that is
admissible as evidence in a court of law [1]. The traditional
forensics methodology consists of acquiring evidence without
altering the original media, analyzing the data to produce the
necessary evidence, and proving the authenticity of the
evidence.

Ten years ago computer forensic practices mainly entailed
examining computer hard drives after a crime took place.
Recently, live response forensics, network forensics, and
rapid evidence gathering of data have been included under the
computer forensics field of study. In digital forensics there
are two basic data types, persistent data and volatile data.
Volatile data is the transient data found on a digital system
that exists while the computer is powered on. Persistent data
is the information stored on a hard drive. This exercise
concentrated primarily on the technical aspects of performing
digital forensics and did not include in-depth coverage of the
legal aspects of forensics.

5.2 Exercise Goals
 The goal of the Digital Forensics exercise was to enable
students to analyze digital media using established digital
forensic techniques. The goal included having students
analyze a piece of digital media and gather digital evidence
using established methods that will stand up in a court of law.

5.3 Description
 The digital forensics exercise focused on the following
scenario:

Agent Johnson of the Office of Special Investigations (OSI)
is in the middle of an investigation against several groups

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

connected to the mafia. Agent Johnson just arrived to a
murder scene of someone connected to the mafia group.
Agent Johnson is in charge of digital evidence collection
and has found a running desktop at the scene. He must: 1)
Perform a live forensic investigation, 2) Conduct a post-
mortem investigation, and 3) Build a report and present the
findings to the instructor. Recovered evidence must include
an IM conversation between mafia members, photos of a
weapons exchange, and the passwords to a user account
with important information.

The two-part exercise included a live response investigation
and a traditional forensic analysis of the physical hard drive.
The exercise setup consisted of a Windows XP SP1 virtual
machine representing the “running desktop” and a USB
external hard drive representing the physical hard drive of the
desktop. Students used a combination of the following
forensics tools to accomplish exercise objectives: 1) Helix
Forensics Live Linux CD, 2) WinHex, 3) md5sum, 4) Linux
‘DD’ command, and 5) FTK Imager.

Throughout the exercise the instructor checked to ensure
students performed their forensic analysis using sound
techniques. In a forensic investigation the integrity of the
original evidence is crucial. The instructor required students
to preserve the chain of command while interacting with the
digital evidence. This included performing the following
steps to accomplish the exercise: 1) Used statically linked
tools from the Helix Linux CD to record all the running
processes, applications, logged in users and all pertinent
transient data of the running desktop, 2) Calculated an
md5sum hash of the physical hard drive in a read-only
manner, 3) Created a forensic image of the physical hard
drive, 4) Took an md5sum hash of the forensic image and
compared it to the original media, 5) Used a hex editor like
WinHex or forensic analysis tool to examine the forensic
image, and 6) Thoroughly documented the process and all the
evidence findings. At the conclusion of the exercise, each
team presented their findings to the instructor.

6 Wireless Access Point Treasure Hunt
6.1 Background
 The capstone DefEX was the Wireless Access Point
(WAP) Treasure Hunt. Students engaged in wardriving to
locate a series of time-constrained challenges distributed
across a small city. Wardriving entails utilizing a vehicle and
a portable computing device to search a geographic area for a
wireless network. Students used network detector software
such as NetStumbler and Kismet to locate WAPs of interest.
The Treasure Hunt challenges located at the WAPs included
completing a cryptography problem and circuit worksheet,
discovering a password vulnerability, conducting a forensics
analysis on a thumb drive, bypassing authentication on a
website, and identifying file, database, and mail server
misconfigurations.

6.2 Exercise Goals
 The overarching objective of the WAP Treasure Hunt
was to test the leadership and decision making skills of the
students in a time-critical environment. The Treasure Hunt
provided a cumulative team-based challenge for students that
reinforced select topics from other exercises.

6.3 Description
 In the WAP Treasure Hunt exercise, teams searched for
a series of WAPs temporarily dispersed by instructors around
a city. At each WAP site, students completed a challenge to
receive the map leading to the next WAP site. Students
earned points for completing challenges within a given time
deadline. If the deadline passed, instructors gave students the
next map but did not award any points. The team
accumulating the most points won the exercise. The exercise
culminated with a final challenge at a bowling alley where
students found the “treasure”, a package of silver and gold
chocolate candies and a surprise pizza and bowling party.

The key organizational activities included constructing the
order of site visits, creating the map scrolls, and setting rules
of engagement for the exercise.

1) Construct Challenge Site Visit Order: The instructor
generated the order of the challenge sites each team visited.
Although a unique path for each team was desirable to
minimize challenge site congestion, due to the number of
teams and sites some redundancy was unavoidable.

2) Create Map Scrolls: For each site, the instructor created a
satellite map of the pertinent city area, delineated a
reasonably sized search area incorporating the challenge site
with a red box, and added red text indicating the SSID for the
WAP at the site. The instructor rolled the maps and tied them
with different colored ribbons to create scrolls. Each team had
a unique ribbon color, which helped site attendants provide
teams with the correct scrolls.

3) Set Rules of Engagement: For safety reasons, the instructor
assigned each team a driver, who was not allowed to assist
students with locating the WAPs or completing the site
challenges. Instructors prohibited students from connecting to
any WAPs other than the ones involved in the exercise and
required them to gain permission from their driver before
connecting to any WAP. Instructors also disallowed using any
equipment other than student laptops, such as external
antennae.

The challenges included completing a cryptography problem
and circuit worksheet, examining WAP password
authentication, conducting a forensics analysis on a thumb
drive, investigating website authentication, and identifying
file, database, and mail server misconfigurations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

1) Initial Challenge: Student teams gathered at an initial site
for an exercise briefing, to review the rules of engagement,
and to complete the first challenge, a cryptography problem
and a circuit diagram worksheet. After reviewing the exercise
purpose and rules, each team received six map scrolls tied
with six different colored ribbons. The cryptography and
circuit diagram challenge answer resulted in one of the six
colors. If students solved the problem correctly and chose the
right scroll, they proceeded to the next challenge. If the team
calculated an incorrect color and chose a wrong scroll, the
map led to a time penalty site where an instructor required
students to answer a set of cyber operations questions before
giving them the map to the next challenge.

2) WAP Configuration: When conducting vulnerability
assessments, students often overlook supporting networking
infrastructure such as switches, routers, and wireless
equipment. The WAP configuration challenge tested this
common oversight while distracting students with a decoy
Nepenthes honeypot. In this challenge, the password-
protected WAP web interface had an easily guessed username
and password. The main WAP configuration screen listed a
passphrase that students could exchange for the next map.

3) Forensics: Each student team analyzed a USB thumb drive
using sound digital forensic techniques. Instructors set up the
challenge site as an “investigation scene”, placing a thumb
drive containing the evidence and a decoy laptop workstation
at the scene. Instructors formatted the thumb drive with a
persistent version of Ubuntu Linux that used an ext3 file
system and embedded the passphrase for the next map in the
slack space of the file system. To find the passphrase, each
team created a forensic image of the thumb drive and
examined the image in a hex editor or a piece of forensic
analysis software.

4) Website Authentication Challenge: The Website
Authentication Challenge required students to complete a six-
level password challenge. Inputting any values for the
username and password on the first level advanced students to
the second level. The passwords for levels two through four
resided in a comment, an image tag, and a hidden form field
in the html source code respectively. Inputting any values into
the username and password fields on the fifth level provided a
list of nine file names from file1.txt through file9.txt.
Inputting each file name into a field titled Magic Phrase gave
students Morse code representations for letters of the
password and a Morse code key. The sixth level gave the hint
l6pass.txt. Students could obtain the password by inputting
http://<ip address>/l6pass.txt into the browser window.
Completing the sixth level gave students a passphrase to
exchange for the next map.

5) FTP, MySQL, and Simple Mail Transfer Protocol (SMTP)
Configuration: Students explored multiple machines running
FTP, MySQL, and SMTP servers to derive a passphrase and
earned the next map. Students retrieved a MySQL username
and password from an FTP server with anonymous login

enabled. Students used the username and password to log into
a MySQL server and retrieve the first part of the map
passphrase from a table. The instructor hid the second part of
the map passphrase in the banner of a SMTP server. Students
created a Transport Control Protocol (TCP) connection with
the SMTP server to retrieve the banner.

7 Conclusion
 Successful completion of DefEX required Computer
Science, Computer Engineering, Electrical Engineering,
Physics, and Math undergraduates to exercise a broad range
of skills. Technical skills included interpreting Assembly
language, analyzing and patching Perl and PHP scripts,
finding and eliminating persistent backdoors, configuring
intrusion detection systems and firewalls to repel known
attacks, and conducting live and post-mortem digital forensics
analyses after an attack. Exercises also required leadership,
teamwork, executing under pressure, and problem-solving
skills.

Providing a diverse group of students with a common set of
foundational knowledge and finding the balance between
enabling participation of novice students and generating
problems complex enough to challenge experienced students
posed the major curriculum design risks. Instructors reduced
the risks by administering a technical survey, requiring
students to complete a set of fundamental exercises, and
assigning balanced student teams. As a result, student teams
successfully completed all of the exercises.

8 Acknowledgements
 The authors wish to thank Dr. Kamal Jabbour, ST, Air
Force Senior Scientist for Information Assurance, Regina
Recco, Dr. Sarah Muccio, Lt Col (ret) Ken Chaisson, and
Thomas Vestal for their diligent support during the
development and execution of these exercises.

9 References
[1] US-CERT, “Computer Forensics,” [Online]. Available:

http://www.us-cert.gov/reading_room/forensics.pdf.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

	SAM5055.pdf
	1 Introduction
	2 Code-Level and System-Level Hardening
	2.1 Background
	2.2 Exercise Goals
	2.3 Code-Level Hardening Description
	2.3.1 Cross-Site Scripting
	2.3.2 Command Injection
	2.3.3 SQL Injection
	2.3.4 File Upload

	2.4 System-Level Hardening Description

	3 Reverse Engineering
	3.1 Background
	3.2 Exercise Goals
	3.3 Reverse Engineering Preparatory Lecture
	3.4 Dynamic Exercise Description
	3.5 Static Exercise Description

	4 Detect and Defeat
	4.1 Background
	4.2 Exercise Goals
	4.3 Description

	5 Digital Forensics
	5.1 Background
	5.2 Exercise Goals
	5.3 Description

	6 Wireless Access Point Treasure Hunt
	6.1 Background
	6.2 Exercise Goals
	6.3 Description

	7 Conclusion
	8 Acknowledgements
	9 References

